Gravitational self-force correction to the innermost stable circular equatorial orbit of a Kerr black hole.

نویسندگان

  • Soichiro Isoyama
  • Leor Barack
  • Sam R Dolan
  • Alexandre Le Tiec
  • Hiroyuki Nakano
  • Abhay G Shah
  • Takahiro Tanaka
  • Niels Warburton
چکیده

For a self-gravitating particle of mass μ in orbit around a Kerr black hole of mass M ≫ μ, we compute the O(μ/M) shift in the frequency of the innermost stable circular equatorial orbit due to the conservative piece of the gravitational self-force acting on the particle. Our treatment is based on a Hamiltonian formulation of the dynamics in terms of geodesic motion in a certain locally defined effective smooth spacetime. We recover the same result using the so-called first law of binary black-hole mechanics. We give numerical results for the innermost stable circular equatorial orbit frequency shift as a function of the black hole's spin amplitude, and compare with predictions based on the post-Newtonian approximation and the effective one-body model. Our results provide an accurate strong-field benchmark for spin effects in the general-relativistic two-body problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transition from inspiral to plunge for a compact body in a circular equatorial orbit around a massive, spinning black hole

There are three regimes of gravitational-radiation-reaction-induced inspiral for a compact body with mass m , in a circular, equatorial orbit around a Kerr black hole with mass M@m: ~i! the adiabatic inspiral regime, in which the body gradually descends through a sequence of circular, geodesic orbits; ~ii! a transition regime, near the innermost stable circular orbit ~isco!; ~iii! the plunge re...

متن کامل

Gravitational self-force on eccentric equatorial orbits around a Kerr black hole

This paper presents the first calculation of the gravitational self-force on a small compact object on an eccentric equatorial orbit around a Kerr black hole to first order in the mass-ratio. That is the pointwise correction to the object’s equations of motion (both conservative and dissipative) due to its own gravitational field, which is treated as a linear perturbation to the background Kerr...

متن کامل

Conservative corrections to the innermost stable circular orbit (ISCO) of a Kerr black hole: A new gauge-invariant post-Newtonian ISCO condition, and the ISCO shift due to test-particle spin and the gravitational self-force

The innermost stable circular orbit (ISCO) delimits the transition from circular orbits to those that plunge into a black hole. In the test-mass limit, well-defined ISCO conditions exist for the Kerr and Schwarzschild spacetimes. In the finite-mass case, there are a large variety of ways to define an ISCO in a post-Newtonian (PN) context. Here I generalize the gauge-invariant ISCO condition of ...

متن کامل

Gravitational self-force correction to the binding energy of compact binary systems.

Using the first law of binary black-hole mechanics, we compute the binding energy E and total angular momentum J of two nonspinning compact objects moving on circular orbits with frequency Ω, at leading order beyond the test-particle approximation. By minimizing E(Ω) we recover the exact frequency shift of the Schwarzschild innermost stable circular orbit induced by the conservative piece of th...

متن کامل

Self-gravitating ring of matter in orbit around a black hole: the innermost stable circular orbit

We study analytically a black-hole-ring system which is composed of a stationary axisymmetric ring of particles in orbit around a perturbed Kerr black hole of mass M . In particular, we calculate the shift in the orbital frequency of the innermost stable circular orbit (ISCO) due to the finite mass m of the orbiting ring. It is shown that for thin rings of half-thickness r M , the dominant fini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 113 16  شماره 

صفحات  -

تاریخ انتشار 2014